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Crystalline Material

Crystalline materials are typically modeled by a minimal unit cell containing all the
constituent atoms in different coordinates, repeated infinite times in 3D space on
a regular lattice, which makes material structures periodic in nature.
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Crystalline Material

@ Crystalline Materials M = (C, X, £)

@ Coordinate Matrix C = [c,Cy,...,c,]T € R"*3: atomic coordinate

: positions, ¢; € R3 corresponds to cartesian coordinates of i-th atom in the
Atom- B : unit cell.

@ Atom-A

@ Feature Matrix X = [x,X2,...,x,]T € R™? : atomic feature set of the
, _____ material, x; € R? corresponds to the d-dimensional feature vector of i-th
atom.

@ Lattice matrix £ = [ly,l»,13]7 € R**3, which describes how a unit cell
repeats itself in the 3D space.

iNiw:;
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Lb

@ Formally, we can represent the infinite periodic structure of Crystal M as

where ki, ky, k3, i € Z,1 <i <n.



Crystalline Material
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Properties
Property Unit
Formation_Energy eV/(atom)
Bandgap (OPT) eV
Formation_Energy eV/(atom)
Bandgap (OPT) eV
Total_Energy eV/(atom)
Ehull eV
Bandgap (MBJ) eV
Bulk Modulus (Kv) GPa
Shear Modulus (Gv) GPa
SLME (%) No unit
Spillage No unit
ez (OPT) No unit
€y (OPT) No unit
€. (OPT) No unit
e (MBJ) No unit
€y (MBJ) No unit
€. (MBJ) No unit
n-Seebeck puVEK™!
n-PF pW(mK?)™*
p-Seebeck puVEK!
p-PF pW (mK?)~*




Crystal Property Prediction

e Given a crystal material’s 3D structure, predicting
different properties is a challenging and important
task in material science.

e Density Functional Theory (DFT)
|—>substantial computational costs.
e Data driven approaches
|—>Accurate as DFT, much faster than it. k‘

e Majority of the existing approaches, constructs
graphs by establishing edges only between nearby
atoms and use deep graph neural network (GNN)
to learn crystal structure representation
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Limitations of Existing Works

e Scarcity of Labeled Data

Existing models have a large number of trainable parameters, which require a huge
amount of tagged training data to learn the models.

e Lack of Interpretability

Existing neural network-based methods hardly provide any explanation for their
results, allows little use of them in the field of material science.

e DFT Error Bias

Models are trained using data gathered from the DFT calculations, hence model
prediction has a DFT error bias.

e Dependency on Domain Knowledge
Incorporating specific domain knowledge into a deep encoding module.
e Lack of Pre-trained Graph Model

It remains an open question how to effectively use pre-training on graph datasets
like crystals, which will be robust and task agnostic



Research Question

e Focusing on developing deep models using Graph Neural Networks (GNN)
to learn more robust and enriched representations for crystalline
materials, which will mitigate the existing issues.

e In specific, we have worked on :

o leveraging a transfer learning-based unsupervised framework to develop an explainable
property predictor (CrysXPP - NPJ Computational Materials (Nature) Journal, 2022)

o Developing a deep pre-trained GNN model using a large curated dataset for crystalline
materials. (CrysGNN - AAAI 2023 [Oral], ML4Materials Workshop at ICLR-2023)



Multi-Graph Construction of Crystal

Crystal
Graph

8 A° radius

| e o) sphere around
Bl ! "+. the bold pink
L5, - node
A
2 —
-
\ ‘.| « e
N Connectivity
Repeating Unit X
Cell Cell Rtom s ''=025 Bond
v MV;—’: 7 On
Features j wy_ g o 7 (" Features

Atom Features

Features Range of Values | Dimension
Group Number 132500518 18
Period Number 1,2, ..., 9 9
Electronegativity 0.5-4.0 10
Covalent Radius 25-250 10

Valence Electrons 1 2seeisil2 12
First lonization Energy 1.3-3.3 10
Electron Affinity -3-3.7 10
Block 8 pid; £ 4

Atomic Volume 1.5-4.3 10

° Xie, T.; and Grossman, J. C. 2018. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett.,
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Limitations of Existing Works
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o Scarcity of Labeled Data

Existing models have a large number of trainable parameters, which require a huge
amount of tagged training data to learn the models.

e Lack of Interpretability

Existing neural network-based methods hardly provide any explanation for their
results, allows little use of them in the field of material science.

e DFT Error Bias

\ Models are trained using data gathered from the DFT calculations, hence model
AN prediction has a DFT error bias.
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Our Proposed Method

e We propose an explainable deep property predictor for crystalline materials which
comprised of two modules :

e CrysAE (Crystal Auto Encoder) and CrysXPP (Crystal eXplainable Property Predictor)

e CrysAE, an auto-encoder based architecture which is trained with all available
unlabeled crystal data (property agnostic), capturing all the important structural and
chemical information of the constituent atoms (nodes) of the crystal graph.

e This learned encoding is leveraged to build up the property predictor, CrysXPP, to
which the knowledge acquired by the encoder is transferred and which is further
trained with a small amount of property-tagged data, thus largely mitigating the
need for having a huge amount of dataset tagged with a specific property.
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CrysXPP(Crystal eXplainable Property Predictor
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Effectiveness of Property Predictor

Materials Project database (38000 crystalline materials)

for MTCGCNN.

Table 2. Summary of the prediction performance (MAE) of different properties trained on 20% data and evaluated on 80% of the data. The best
performance is highlighted in bold and second-best with *. We report MAE jointly training most correlated property (average on all property pairs)

Property Unit CGCNN MTCGCNN MEGNet GATGNN ElemNet CrysXPP
State properties Formation energy eV/atom 0.127 0.112 (0.147) 0.142 0.164 0.098* 0.086
Band gap eV 0.503 0.497 (0.518) 0.498 0.489* 0.491 0.467
Fermi energy eV 0.528 0.503* (0.601) 0.533 0.533 0.588 0.471
Magnetic moment Ug 1.21 1.16 (1.22) 1.19 1.09 0.96 1.03*
Elastic properties Bulk moduli log(GPa) 0.09 0.09 (0.09) 0.105 0.088* 0.1057 0.08
Shear moduli log(GPa) 0.125% 0.120 (0.078) 0.187 0.123 0.148 0.105
Poisson ratio - 0.04 0.037* (0.039) 0.041 0.039 0.039 0.035




Removal of DFT Error bias

e Setup:

We consider a property predictor which has been trained with crystals whose
particular property (say Formation Energy, Band Gap) values have been
theoretically derived using DFT.

We then fine tune the parameters with limited amount of experimental data.

e Formation Energy : 1500 crystals whose experimental values of formation energy is
known.

e Band Gap : we collect 20 experimental instances from the domain experts, out of
which we randomly pick 10 instances to fine-tune the parameters and report the
prediction value for the rest



Table 3. MAE of predicting experimental values after fine tuning different methods with different percentages of experimental data for Formation
Energy. MAE of the experiment where we replace the experimental data with the same amount of DFT data to train CrysXPP, is provided in the

bracket. The closest prediction is marked in bold and second-best with *.

Experiment settings CGCNN MTCGCNN GATGNN MEGNet ElemNet CrysXPP

Train on 20% DFT test on full experimental data 0.24 0.74 0.30 0.28 0.215 0.22

Train on 20% DFT, 20% experimental data test on 80% experimental data 0.21 0.24 0.23 0.23 0.16* 0.15 (0.206)
Train on 80% DFT, 20% experimental data test on 80% experimental data 0.16 0.22 0.19 0.18 0.1344*  0.1319 (0.195)
Train on 80% DFT, 80% experimental data test on 20% experimental Data 0.12 0.15 0.13 0.125 0.0905*  0.0892 (0.174)




Materials Exp DFT CrysXPP-Exp CrysXPP

GaSb 0.72  0.36 0.77 0.9
GaP 2.26 1.69 2.10 1.86
GaAs 1.42 0.18 1.54 1.56
InN 1.97 047 1.92 1.85
GaN 32 173 2.11 1.47
NiO 4.3 2.214 2.45 2.08

Si 1.12  0.85 1.08 0.95
ZnO 3.37 1.05 3.42 2.1
FeO 24 0 2.25 1.72
MnO 4 0.20 2.31 1.81

TABLE 8: Experiment (Exp) and predicted value for Band Gap for 10 crystals calculated

by DFT and other machine learning models after fine-tuned by experimental data.



Explanation for Formation Energy

Group Period Electro Covalent
Number Number Negatlwty Radius

: M Ba
- EEr
- BF

13691215181 2 345678911 2345678910.123456728910Q

Bakr,F; has Formation Energy -4.41, indicating stability of the materials

Period and Group Numbers provide the information to distinguish each atom.
Non-zero difference in Electronegativity of atoms indicates stability in structure.
Covalent Radius determines the extent of overlap of electron densities of
constituents. Higher the radius means weaker the bond. Interesting to note here the
trend of weights is the reverse than that of radius itself.



Summary

e In this work, we propose an explainable property predictor for crystalline
materials, CrysXPP to predict different crystal state and elastic properties with
accurate precision using small amount of property-tagged data.

e We address the issue of limited crystal data of a particular property, using
pretraining - transfer learning paradigm.

e We further find the encoder knowledge is extremely useful in de-biasing DFT
error using a meagre instances of experimental results.

e With appropriate case studies, we show that the explanations provided by the
feature selection module are in sync with the domain knowledge.

Paper : https://www.nature.com/articles/s41524-022-00716-8.pdf
Github Repo : https://github.com/kdmsit/crysxpp



https://www.nature.com/articles/s41524-022-00716-8.pdf
https://github.com/kdmsit/crysxpp

CrysGNN: Distilling pre-trained knowledge
to enhance property prediction for
crystalline materials

Kishalay Das, Bidisha Samanta, Pawan Goyal, Seung-Cheol Lee, Satadeep
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Limitations of Existing Works

‘e Dependency on Domain Knowledge

Incorporating specific domain knowledge into a deep encoding module.

e Lack of Pre-trained Graph Model

It remains an open question how to effectively use pre-training on graph datasets
like crystals, which will be robust and task agnostic
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Limitations of SOTA Models
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Limitations
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Problem Statement

Can we leverage a large amount of untagged material structures to pretrain
a Deep GNN model which learn the complex hidden features which otherwise
are difficult to identify?

Can we inject the pre-trained knowledge into any downstream property
predictor, irrespective of their encoding architecture?




Pretraining GNN

e Prior works focus on molecular and biological Effibediding lluetiation  Nalvestratadios
dataset, which is difficult to extend directly to g g
. . (aiiii) Node-level + (ai)  Node-level (ail) Graph-level
Crysta"]ne material. Graph-level pre-training pre-training only pre-training only
|
e Structural semantics are different between o %o 3 °° X e 93
molecules and materials. A 3 A A
e For graph-level pre-training —> supervised & “ ] i
property prediction using a huge amount of -I-"':- s WL L "'""I':_
o - g
labelled dataset —> less effective in material i /| 8 (x]
science where property labeled data is extremely
scarce Hu et al. Strategies for Pre-training Graph Neural Networks. (ICLR-2020) :

Node-level and graph-level pre-training on GNNs to capture domain specific
PY Conventional pre-train fine tuning framework knowledge about nodes and edges, in addition to global graph-level

L. . knowledge. They perform pretraining on large dataset of chemical and
limits knowledge transfer capability of the biological dataset.
pre-trained model if the downstream task and

dataset is different.



Proposed Methodology

e We developed a pre-trained GNN model (CrysGNN) for Crystalline materials, which captures
both local (node level) chemical and global (graph level) structural semantics of crystal
graphs.

e We curate a new large untagged crystal dataset with 800K crystal graphs to pretrain
CrysGNN.

e We introduce a self supervised graph pre-training method which captures (a) connectivity of
different atoms, (b) different atomic properties and (c) graph similarity from a large set of
unlabeled crystal graph data.

e Subsequently we distill important structural and chemical information of a crystal from the
pre-trained CrysGNN model and pass it to the property predictor.

e Retrofit the pre-trained CrysGNN model into any existing state-of-the-art property predictor,
to improve their property prediction performance.



CrysGNN: Node Level Pre-training
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CrysGNN: Graph Level Pre-training

e Space group of Crystal Structure : The seven primitive crystal SVTS“*“‘S f WY
| X ol X— g X 4L+
o Describe the symmetry of a unit cell of the §7‘“D_] z” H_‘ e U jé Tml

crystal material.

Isometric (or cubic) Tetragonal Orthorhombic Hexagonal
E h h . All three axes are equal Two of the three axes All three axes are Of four axes, three are
@) l g in length, and all are are equal in length, and all unequal in length, and  of equal length, are
ac C rySta as a u n ] q u e S pace rou p perpendicular to one three axes are perpendicular all are perpendicular separated by equal
n u m be r another. to one another. to one another. angles, and lie in the
.

same plane. The fourth
axis is perpendicular to

o Y the plane of the other
© 230 unique space groups . N WS
X

/ //\ i h of the t
) et SN e

), S // z
s S \ 4
o C rysta l SySte m : Triclinic Monoclinic Rhombohedral (or trigonal)*

All three axes are All three axes are unequal All three axes are of equal

A

. . . uneqqal in Iength, and in length, anq two axes length, ;nd none of the axes is
o Space group level information can classify @ | ivaasreerdeds oo popendcdarto stz e 1o
o same size and shape.
crystal graph into 7 broad groups of crystal "

© Encyclopaedia Britannica, Inc. *Some sources do not separate the hexagonal and rhombohedral (trigonal) systems.

systems.

we adopt supervised and contrastive learning to learn structural similarities between
graph structures using the space group and crystal system information of the materials
respectively.




CrysGNN: Graph Level Pre-training
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Distillation and Property Prediction

Pre-trained CrysGNN
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Dataset Details

Table 1: Datasets Details

Task | Datasets | Graph Num. | Structural Info. | Properties Count |  Data Type
Pro-train; OQMD 670K v X DFT Calculated
C-ATANME | Materials Project 130K % X DFT Calculated
Property MP 2018.6.1 69K v 2 DFT Calculated
(Prediction) JARVIS(2018.6.1) 55K v 19 DFT Calculated
REIChen OQMD-EXP 1.5K v 1 Experimental




Downstream Task Evaluation

) ) ) )

Property CGCNN CGCNN CrysXPP CrysXPP GATGNN GATGNN ALIGNN ALIGNN

(Distilled (Distilled) Distilled) (Distilled)
Formation Energy 0.039 0.032 0.041 0.035 0.096 0.091 0.026 0.024
Bandgap (OPT) 0.388 0.293 0.347 0.287 0.427 0.403 0.271 0.253
Formation Energy 0.063 0.047 0.062 0.048 0.132 0.117 0.036 0.035
Bandgap (OPT) 0.200 0.160 0.190 0.176 0.275 0.235 0.148 0.131
Total Energy 0.078 0.053 0.072 0.055 0.194 0.137 0.039 0.038
Ehull 0.170 0.121 0.139 0.114 0.241 0.203 0.091 0.083
Bandgap (MBJ) 0.410 0.340 0.378 0.350 0.395 0.386 0.331 0.325
Spillage 0.386 0.374 0.363 0.357 0.350 0.348 0.358 0.356
SLME (%) 5.040 4.790 5.110 4.630 5.050 4.950 4.650 4.590
Bulk Modulus (Kv) 12.45 12.31 13.61 12.70 11.64 11.53 11.20 10.99
Shear Modulus (Gv) 11.24 10.87 11.20 10.56 10.41 10.35 9.860 9.800

— — — —

Table 2: Summary of the prediction performance (MAE) of different properties in Materials project (Top) and JARVIS-DFT
(Bottom). Model M is the vanilla variant of a SOTA model and M (Distilled) is the distilled variant using the pretrained CrysGNN.
The best performance is highlighted in bold.



Downstream Task Evaluation

e Distilled version of any state-of- the-art model outperforms the vanilla model across all the
properties.

e Average relative improvement across all properties for ALIGNN (4.19%) and GATGNN (8.02%) is
lesser compared to CGCNN (16.20%) and CrysXPP (12.21%).

e Possible reason : ALIGNN and GATGNN are more complex models that CrysGNN.

e Potential Improvement : Incorporating angle-based information or attention mechanism as a part
of pre-training framework may improve further.



Comparison with Existing Pre-trained Models.

e Demonstrate the effectiveness of the

knowledge distillation method vis-a-vis the
conventional fine-tuning approaches. B - kil -
. . Formation Energy 0.047 0.056 0.062 0.764
e We finetune CrysGNN and compare with Bandgap (OPT) |  0.160 0183 019 0688
.. . Total Energy 0.053 0.069 0.072 1.451
distilled CGCNN, CrysXPP and pretrain GNN by Ehull 0.121 0130 0139 Ll12
Bandgap (MBJ) 0.340 0.371 0.378 1.493
hu et.al. Bulk Modulus (Kv) | 12.31 13.42 13.61 20.34
Shear Modulus (Gv) 10.87 11.07 11.20 16.51
. . . SLME (%) 4.791 5.452 5.110 9.853
e Encoding architecture is same for CrysGNN, Spillage 0354 0374 0363 048l
CGCNN, and CrysXPP (pretramed'fmetuned Table 3: Comparison of the prediction performance (MAE)
version of CGCNN) of seven properties in JARVIS-DFT between CrysGNN and
existing pretrain-finetune models, the best performance is
e Distilled CGCNN outperforms finetuned version | highlighted in bold.

of CrysGNN and both the baselines



Effectiveness on sparse training dataset.

Property  Train-Val-Test ALIGNN ALIGNN CGCNN CGCNN CrysXPP CrysXPP GATGNN GATGNN

(%) (Distilled) (Distilled) (Distilled) (Distilled)
Hhanliean 20-10-70  0.497 0.485(2.53) 0.588 0.453* (23.04) 0.598 0.450% (24.82) 0.541 0.521 (3.70)
At 40-10-50 0404 0.395(2.20) 0.532 0.419% (21.41) 0.496 0.405% (18.40) 0.462 0.448* (2.81)
(MBJ) 60-10-30  0.387 0.380(1.98) 0449 0.364(19.08) 0.435 0.360(17.36) 0.449 0.439 (2.29)

Bulk Modulus  20-10-70 1470 1406 (4.35) 1691 16.26(380) 1542 1425%(7.59) 14.80 14.19 (4.12)
(Kv)  40-10-50 1247 12.11(2.89) 1481 14.46(236) 15.13 14.02%(7.34) 12.98 1259 (3.00)

- 60-10-30 1123 11.01(1.96) 1423 14.05(1.26) 14.76 13.73(6.98) 12.01 11.75(2.16)

Shear Modulus 201070 1271 1231(3.15) 1389 1250(10.01) 13.39 1207*(9.86) 12.83 1242(3.20)

“Gvy 401050 1098 10.67(2.82) 1204 1L54* (415 12.16 1101*(946) 1143 1123(1.75)
60-10-30 1024 10.04(1.95) 1175 1131(3.74) 11.77 10.67(9.35) 10.65 10.47 (1.69)




Conclusion

e In this work, we present a novel but simple pre-trained GNN framework, CrysGNN, for
crystalline materials.

e Captures both local chemical and global structural semantics of crystal graphs, using
node and graph level pre-training respectively

e \We curate a new large untagged crystal dataset with 800K crystal graphs to pretrain
CrysGNN. We will release the pre-trained model along with the large dataset for the
community.

e We distill important knowledge from CrysGNN and inject it into different state of the art
property predictors and enhance their performance. We believe this approach can have
applications in other domains too.

e Extensive experiments show its superiority over conventional fine-tune models.

Arxiv : https://arxiv.org/abs/2301.05852
Github Repo for CrysGNN : https://github.com/kdmsit/crysgnn
Github Repo for 800K Dataset :_https://github.com/kdmsit/crystal_untagged 800K



https://arxiv.org/abs/2301.05852
https://github.com/kdmsit/crysgnn

Future Work

e Multi-modal Representation.
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Thank You for Listening

Any Questions?
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