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Periodic Crystal Materials

Figure: Structure of Crystalline Materials

• Crystal Material M = (A,X, L)
• Feature Matrix (A): Atomic Feature Set of
the Material.
• Coordinate Matrix (X) : Atomic Fractional
Coordinate Positions.
• Lattice Matrix (L) : How a unit cell repeats
itself in the 3D space.

•we can represent its infinite periodic structure as

Ĉ = {ĉi|ĉi = ci +
3∑︁
j=1

kjlj}; X̂ = {x̂i|x̂i = xi} (1)

where k1, k2, k3, i ∈ Z, 1 ≤ i ≤ n.

Problem Formulation
NewMaterial Generation:
Given a set of stable and valid 3D crystal
structures, generate new crystal materials
which are valid and stable in nature and pose
desired chemical properties.

Challenges

• None of these existing SOTA models learns the joint distribution of atom coordinates,
types, and lattice structure of the material.
• SE(3)-equivariant GNNs as backbone denoising network→ largely relies on messages
passing around the local neighborhood of the atoms → fail to incorporate global
structural knowledge into the diffusion process.
• SOTA models are unconditional by design→ limited utility in real-world scenarios.
• In a realistic setup, users would input key material details, such as chemical formula,
space group, symmetry, bond lengths, and properties, ensuring the generated structure
aligns with these specifications.

Text Guided Material Generation

Figure: Detailed textual description generated by Robocrystallographer, less-detailed prompts by domain
experts, and crystal unit cell structure of BaPd2.

Text-Guided Diffusion Model for Material Generation

Figure: Model Architecture of our proposed text guided diffusion model TGDMat.

Diffusion on L Leverage Denoising Diffusion Probabilistic Model (DDPM)

q(Lt|L0) = N (Lt|
√︀
ᾱtL0, (1 − ᾱt)I) (2)

p(Lt−1|Mt, Cp) = N {Lt−1|μL(Mt, Cp), βt
(1− ᾱt−1)

(1− ᾱt)
I}

μL(Mt, Cp) =
1
p
αt

(︀
Lt −

1− αt√︀
1− ᾱt

𝜖L(Mt, Cp, t)
)︀ (3)

Llattice = E𝜖L,t∼U (1,T)∥𝜖L − 𝜖L∥22 (4)

Diffusion on A Leverage Discrete Denoising Diffusion Probabilistic Model (D3PM)

q(at|at−1) = Cat(at; p = at−1Qt) (5)

[Qt] i,j := q(at = i | at−1 = j) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if i = j = [MASK] .

1− βt, if i = j ̸= [MASK]

βt, if i ̸= j = [MASK] .

(6)

Ltype = LVB + λLCE (7)

Diffusion on X Atomic fractional coordinates in crystal material lives in quotient space
RN×3/ZN×3 induced by the crystal periodicity→ noise sample fromWrapped Normal
(WN) distribution to X and during backward diffusion leverage Score Matching Networks.

q(Xt | X0) = NW(Xt | X0, σ
2
t I); Xt = fw(X0 + 𝜎t𝜖

X) (8)

Lcoord = EXt∼q(Xt|X0)
t∼U (1,T)

∥∇Xtlogq(Xt|X0) − 𝜖X(Mt, Cp,t)∥22 (9)

Text Guided Denoising NetworkWe extract the [CLS] token embedding from the
material’s textual description and project it into a contextual embedding Cp, which is
then used to guide the denoising process in the equivariant GNN model. We fuse textual
representation Cp into input atom feature h0i as

h0i = ρ { fatom(ai) || fpos(t) || Cp (10)

Crystal Structure Prediction (CSP)

Method # Samples
Perov-5 Carbon-24 MP-20

Match Rate ↑ RMSE ↓ Match Rate ↑ RMSE ↓ Match Rate ↑ RMSE ↓

CDVAE
1 45.31 0.1138 17.09 0.2969 33.90 0.1045
20 88.51 0.0464 88.37 0.2286 66.95 0.1026

DiffCSP
1 52.02 0.0760 17.54 0.2759 51.49 0.0631
20 98.60 0.0128 88.47 0.2192 77.93 0.0492

TGDMat
(Short)

1 56.54 0.0583 24.13 0.2424 52.22 0.0597
20 98.25 0.0137 88.28 0.2252 80.97 0.0443

TGDMat
(Long)

1 90.46 0.0203 44.63 0.2266 55.15 0.0572
20 98.59 0.0072 95.27 0.1534 82.02 0.0483

Table: Summary of results on CSP task.

RandomMaterial Generation (Gen)

Dataset Method
Validity ↑ Coverage ↑ Property Statistics (EMD) ↓

Compositional Structural COV-R COV-P # Element ρ E

Perov-5

CDVAE 98.59 100 99.45 98.46 0.0628 0.1258 0.0264
CDVAE+ 98.45 99.8 99.53 99.09 0.0609 0.1276 0.0223
DiffCSP 98.85 100 99.74 98.27 0.0128 0.1110 0.0263
DiffCSP+ 98.44 100 99.85 98.53 0.0119 0.1070 0.0241

TGDMat(Short) 98.28 100 99.7 99.24 0.0108 0.0947 0.0257
TGDMat(Long) 98.63 100 99.83 99.52 0.0090 0.0497 0.0187

Carbon-24

CDVAE - 100 99.8 83.08 - 0.1407 0.285
CDVAE+ - 100 99.8 84.76 - 0.1377 0.266
DiffCSP - 100 99.9 97.27 - 0.0805 0.082
DiffCSP+ - 100 99.9 97.33 - 0.0763 0.085

TGDMat(Short) - 100 99.8 91.77 - 0.0681 0.087
TGDMat(Long) - 100 99.9 92.43 - 0.043 0.063

MP-20

CDVAE 86.70 100 99.15 99.49 1.432 0.6875 0.2778
CDVAE+ 87.42 100 99.57 99.81 0.972 0.6388 0.2977
DiffCSP 83.25 100 99.71 99.76 0.3398 0.3502 0.1247
DiffCSP+ 85.07 100 99.8 99.89 0.3122 0.3799 0.1355

TGDMat(Short) 86.60 100 99.79 99.88 0.3337 0.3296 0.1154
TGDMat(Long) 92.97 100 99.89 99.95 0.2890 0.3382 0.1189

Table: Summary of results on Gen task.

Takeaways

• First to explore text-guided diffusion for material generation, bridging language under-
standing and material structure generation.
•Unlike prior models, TGDMat conducts joint diffusion on lattices, atom types, and
coordinates, enhancing its ability to accurately capture the crystal geometry.
• Additionally, incorporating global structural knowledge through textual descriptions at
each denoising step improves TGDMat’s ability to generate plausible materials with
valid and stable structures.
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