

Periodic Materials Generation using Text-Guided Joint Diffusion Model

Kishalay Das¹, Subhojyoti Khastagir¹, Pawan Goyal¹, Seung-Cheol Lee², Satadeep Bhattacharjee², Niloy Ganguly¹

Periodic Crystal Materials

- Crystal Material M = (A, X, L)
- Feature Matrix (A): Atomic Feature Set of the Material.
- Coordinate Matrix (X) : Atomic Fractional Coordinate Positions.
- Lattice Matrix (L) : How a unit cell repeats itself in the 3D space.

Figure: Structure of Crystalline Materials

• we can represent its infinite periodic structure as

$$\hat{c} = \{\hat{c}_i | \hat{c}_i = c_i + \sum_{j=1}^3 k_j l_j\}; \hat{X} = \{\hat{x}_i | \hat{x}_i = x_i\}$$

where $k_1, k_2, k_3, i \in Z, 1 \le i \le n$.

Problem Formulation

New Material Generation: Given a set of stable and valid 3D crystal structures, generate new crystal materials which are valid and stable in nature and pose desired chemical properties.

Challenges

- None of these existing SOTA models learns the joint distribution of atom coordinates, types, and lattice structure of the material.
- SE(3)-equivariant GNNs as backbone denoising network \rightarrow largely relies on messages passing around the local neighborhood of the atoms \rightarrow fail to incorporate global structural knowledge into the diffusion process.
- SOTA models are unconditional by design \rightarrow limited utility in real-world scenarios.
- In a realistic setup, users would input key material details, such as chemical formula, space group, symmetry, bond lengths, and properties, ensuring the generated structure aligns with these specifications.

Text Guided Material Generation

BaPd2 is Cubic structured and crystallizes in the cubic Fd-3m space group. Ba(1) is bonded in a 12-coordinate geometry to twelve equivalent Pd(1) atoms. All Ba(1)-Pd(1) bond lengths are 3.37 \tilde{A} . Pd(1) is bonded to six equivalent Ba(1) and six equivalent Pd(1) atoms to form a mixture of face, edge, and corner-sharing cuboctahedra. All Pd(1)-Pd(1) bond lengths are 2.88 \tilde{A} . Its formation energy per atom is -0.578, band gap is 0.0, energy above *hull is 0.0.* Generate the material

Detailed Description by Robocrystallographer

Below is a description of a bulk material. The chemical formula is BaPd2. The elements are Ba, Pd. The formation energy per atom is negative. The band gap is zero. The energy above the convex hull is zero. The space group number is 227. The crystal system is *cubic*.Generate the material

Short Prompt by Users

Unit Cell Structure

Figure: Detailed textual description generated by Robocrystallographer, less-detailed prompts by domain experts, and crystal unit cell structure of **BaPd**₂.

¹Indian Institute of Technology Kharagpur, India, ² Indo Korea Science and Technology Center, Bangalore, India

Text-Guided Diffusion Model for Material Generation

Figure: Model Architecture of our proposed text guided diffusion model TGDMat.

Diffusion on L Leverage Denoising Diffusion Probabilistic Model (DDPM)

$$q(L_t|L_0) = \mathcal{N}(L_t|\sqrt{\bar{\alpha}_t}L_0, (1 - \bar{\alpha}_t)\mathbf{I}) \qquad (2)$$

$$p(L_{t-1}|M_t, \mathbf{C}_p) = \mathcal{N}\{L_{t-1}|\mu^L(M_t, \mathbf{C}_p), \beta_t \frac{(1 - \bar{\alpha}_{t-1})}{(1 - \bar{\alpha}_t)}\mathbf{I}\}$$

$$\mu^L(M_t, \mathbf{C}_p) = \frac{1}{\sqrt{\alpha_t}}(L_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}}\hat{\epsilon}^L(M_t, \mathbf{C}_p, t))$$

$$\mathscr{L}_{lattice} = \mathbb{E}_{\epsilon^L, t \sim \mathscr{U}(1, T)} \|\epsilon^L - \hat{\epsilon}^L\|_2^2 \qquad (4)$$

Diffusion on A Leverage Discrete Denoising Diffusion Probabilistic Model (D3PM)

$$q(a_{t}|a_{t-1}) = Cat(a_{t}; p = a_{t-1}Q_{t})$$

$$[Q_{t}]_{i,j} := q(a_{t} = i \mid a_{t-1} = j) := \begin{cases} 1, & \text{if } i = j = [MASK]. \\ 1 - \beta_{t}, & \text{if } i = j \neq [MASK] \\ \beta_{t}, & \text{if } i \neq j = [MASK]. \end{cases}$$

$$\mathcal{L}_{type} = \mathcal{L}_{VB} + \lambda \mathcal{L}_{CE}$$

$$(5)$$

Diffusion on X Atomic fractional coordinates in crys
$$\mathbb{R}^{N \times 3}/\mathbb{Z}^{N \times 3}$$
 induced by the crystal periodicity \rightarrow not (WN) distribution to **X** and during backward diffusior

$$q(\mathbf{X}_{t} | \mathbf{X}_{0}) = \mathcal{N}_{W}(\mathbf{X}_{t} | \mathbf{X}_{0}, \sigma_{t}^{2}\mathbf{I}); \ \mathbf{X}_{t} = f_{w}(\mathbf{X}_{0} + \sigma_{t}\epsilon^{\mathbf{X}})$$
(8)
$$\mathscr{L}_{coord} = \mathbb{E}_{\mathbf{X}_{t} \sim q(\mathbf{X}_{t} | \mathbf{X}_{0})} \| \nabla_{\mathbf{X}_{t}} \log q(\mathbf{X}_{t} | \mathbf{X}_{0}) - \hat{\epsilon}^{\mathbf{X}}(\mathbf{M}_{t}, \mathbf{C}_{\mathbf{p}, t}) \|_{2}^{2}$$
(9)
$$t \sim \mathscr{U}(\mathbf{1}, T)$$

Text Guided Denoising Network We extract the [CLS] token embedding from the material's textual description and project it into a contextual embedding C_p , which is then used to guide the denoising process in the equivariant GNN model. We fuse textual representation C_p into input atom feature h_i^0 as

 $h_{i}^{0} = \rho \{ f_{atom}(a_{i}) || f_{pos}(t) || C_{p}$

(1)

$$\mathcal{C}_{CE}$$

stal material lives in quotient space ise sample from Wrapped Normal n leverage Score Matching Networks.

Crystal Structure Prediction (CSP)

Method	# Samples	Perov-5		Carbon-24		MP-20	
		Match Rate 1	RMSE↓	Match Rate 1	RMSE↓	Match Rate 1	RMSE↓
CDVAE	1	45.31	0.1138	17.09	0.2969	33.90	0.1045
	20	88.51	0.0464	88.37	0.2286	66.95	0.1026
DiffCSP	1	52.02	0.0760	17.54	0.2759	51.49	0.0631
	20	98.60	0.0128	88.47	0.2192	77.93	0.0492
TGDMat (Short)	1	56.54	0.0583	24.13	0.2424	52.22	0.0597
	20	98.25	0.0137	88.28	0.2252	80.97	0.0443
TGDMat (Long)	1	90.46	0.0203	44.63	0.2266	55.15	0.0572
	20	<u>98.59</u>	0.0072	95.27	0.1534	82.02	0.0483

Detect		Validity ↑		Coverage 1		Property Statistics (EMD)							
Dataset	Method	Compositional	Structural	COV-R	COV-P	# Element	ρ	E					
	CDVAE	98.59	100	99.45	98.46	0.0628	0.1258	0.0264					
	CDVAE+	98.45	99.8	99.53	99.09	0.0609	0.1276	0.0223					
	DiffCSP	98.85	100	<u>99.74</u>	98.27	0.0128	0.1110	0.0263					
Deres / F	DiffCSP+	98.44	100	99.85	98.53	0.0119	0.1070	0.0241					
Perov-5	TGDMat(Short)	98.28	100	99.7	<u>99.24</u>	<u>0.0108</u>	0.0947	0.0257					
	TGDMat(Long)	<u>98.63</u>	100	99.83	99.52	0.0090	0.0497	0.0187					
	CDVAE	-	100	99.8	83.08	-	0.1407	0.285					
	CDVAE+	_	100	99.8	84.76	-	0.1377	0.266					
	DiffCSP	-	100	99.9	97.27	-	0.0805	0.082					
Carbon 04	DiffCSP+	-	100	99.9	97.33	-	0.0763	0.085					
Carbon-24	TGDMat(Short)	-	100	99.8	91.77	-	0.0681	0.087					
	TGDMat(Long)	-	100	99.9	92.43	-	0.043	0.063					
	CDVAE	86.70	100	99.15	99.49	1.432	0.6875	0.2778					
	CDVAE+	87.42	100	99.57	99.81	0.972	0.6388	0.2977					
	DiffCSP	83.25	100	99.71	99.76	0.3398	0.3502	0.1247					
	DiffCSP+	85.07	100	<u>99.8</u>	99.89	<u>0.3122</u>	0.3799	0.1355					
MP-20	TGDMat(Short)	86.60	100	99.79	99.88	0.3337	0.3296	0.1154					
	TGDMat(Long)	92.97	100	99.89	<u>99.95</u>	0.2890	0.3382	0.1189					

Takeaways

- standing and material structure generation.
- valid and stable structures.

Contact and Paper Information

Table: Summary of results on CSP task.

Random Material Generation (Gen)

Table: Summary of results of Gen Lask

• First to explore text-guided diffusion for material generation, bridging language under-

• Unlike prior models, TGDMat conducts joint diffusion on lattices, atom types, and coordinates, enhancing its ability to accurately capture the crystal geometry.

• Additionally, incorporating global structural knowledge through textual descriptions at each denoising step improves TGDMat's ability to generate plausible materials with

