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Abstract—Graph neural networks (GNNs) are able to achieve
state-of-the-art performance for node representation and classi-
fication i n a n etwork. B ut, m ost o f t he e xisting G NNs ¢ an be
applied to simple graphs, where an edge connects only a pair
of nodes. Studies have shown that hypergraphs are effective
to model real-world relationships which are of higher order
in nature. Recently, graph neural networks are proposed for
hypergraphs, but they implicitly use clique or star expansions to
convert the hypergraph to a simple graph, or use computationally
expensive hypergraph Laplacian.

In this work, we propose a novel hypergraph neural network
for semi-supervised hypernode classification, w hich operates
directly on the hypergraphs with varying hyperedge sizes. Within
each layer, it indirectly works on the line graph of the given
hypergraph, without actually forming the line graph explicitly.
Moreover, it also employs a self-attention mechanism to learn
the weights of those edge relationships. Experimentally, HAIN
is able to improve the state-of-the-art hypernode classification
performance on all the datasets we use. We make the source
code available to ease the reproducibility of the results.

Index Terms—Graph Neural Network, Representation Learn-
ing, Hypernode Classification

I. INTRODUCTION

Graph representation learning got remarkable attention in
the last few years. Performance on semi-supervised tasks such
as node classification in a graph has improved significantly due
to invent of different types of graph neural networks (GNNs)
[1], [2]. Graph convolution network (GCN) [3] is one of the
most popular graph neural network structure that aggregates
the transformed attributes over the neighborhood of a node.
Graph neural networks for node representation can differ in the
way they aggregate attributes from a neighborhood [4]. Spatial
neighborhood aggregation through node subsampling [S] and
via self-attention [2] are also proposed. GNNs are typically
learned in a semi-supervised way by minimizing the cross
entropy loss of predicting the labels of a subset of nodes. More
recently, Graph Isomorphism Network (GIN) is proposed in
[6], which is theoretically shown to be as powerful as the
Weisfeiler-Lehman graph isomorphism test. Researchers have
come up with higher order GNNs [7] which can aggregate
information from a higher order neighborhood of a node.

Most of the existing graph neural network approaches are
suited for simple graphs, i.e., when the relationship between
the nodes is pairwise. In such a graph, each edge connects only
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two vertices (or nodes). However, real life interactions among
the entities are more complex in nature and relationships can
be of high-order (beyond pairwise connections). For example,
when four authors write a research paper together, it is not
necessary that any two of them are already connected directly
[8]. They are still coauthors because of some other coauthor
in the paper who is strongly connected to both of them.
Thus, representing such a co-authorship network by a simple
graph may not be suitable. Hypergraphs [9] are introduced
to model such complex relationships among the real world
entities in a graph structure. In a hypergraph, each edge
may connect more than two nodes. So an edge is essentially
denoted by a subset of nodes, rather than just a pair. Edges
in a hypergraph are called hyperedges and nodes are called
hypernodes. Computation on hypergraphs is more expensive
and also complicated. But due to their power to capture real
world interactions, it is important to design learning algorithms
for hypergraph representation.

Network analysis community shows interest in different
applications of hypergraph mining [10], [11]. There exist
different ways to transform a hypergraph to a simple graph
such as via clique expansion and star expansion [12]-[14].
Clique expansion creates cliques by connecting any pair of
nodes belonging to the same hyperedge in the transformed
simple graph. The star expansion creates a bipartite graph
by replacing each hyperedge by a new node, and then con-
nects that node to all the hypernodes which belong to that
hyperedge. Typically, the analysis on a hypergraph is done by
performing the downstream mining tasks on the transformed
simple graph. There are also tensor based approaches [15]
available to deal with hypergraphs, but typically they assume
that the size of all the hyperedges in the hypergraph to be
the same (i.e., uniform hypergraph!) [16], [17]. Very recently,
some graph neural networks based approaches are proposed
for hypergraphs [18], [19]. Many of them implicitly use
clique expansion [20] or hypergraph Laplacian [21] to use
convolution on the hypergraph.

Line graph of a graph is a classical concept in graph theory
[22], [23]. Edges of the original graph are mapped to the
nodes of a line graph and edges in the line graph preserve the
connectivity of the edges in the original graph. Very recently,

'A k-uniform hypergraph is a hypergraph with all its hyperedges of size k.



line graphs have been used in graph representation learning
and graph neural networks [24]-[26]. They have shown that
propagating information through edge-to-edge relationships
helps the overall feature learning. Line graph of a hypergraph
is still a simple graph (i.e., each edge connects only two nodes)
[23]. Naturally, line graph can offer an effective way of ap-
plying graph neural networks and convolution on hypergraphs.
Besides, many of the existing works on hypergraph neural
networks [21], [27] assume that hyperedges are decomposable
in nature. They inherently break an hyperedge into multiple
nodes and tend to relate those nodes because of their common
membership in the same hyperedge. But as suggested in
[19], [27], relationship held within a complete hyperedge may
not exist within an incomplete subset of the hyperedge. As
line graph of a hypergraph creates a node for each entire
hyperedge, it does not assume the notion of decomposability
of an hyperedge in a hypergraph.

However, not much work is developed to exploit the concept
of line graph in hypergraph analysis and representation. This
is mainly due to the following two challenges: (i) Line graph
of a hypergraph is computationally quite expensive to form
and operate on, (ii) Mere conversion of a hypergraph to its line
graph with heuristics to set edge weights (as proposed in [22])
in the line graph cannot capture the real dynamics between
hyperedge-to-hyperedge relationships in the hypergraph. In
this work, we precisely address them by making the following
novel contributions.

o« We propose a hypergraph neural network, referred as
HAIN (Hypergraph Attention Isomorphism Network)?,
which directly operates on a hypergraph structure for
semi-supervised hypernode classification. HAIN can han-
dle hypergraphs with varying hyperedge sizes. Within
each layer of HAIN, it indirectly works on the line
graph of the given hypergraph, without actually forming
it explicitly. In contrast to other approaches in general
graph representation literature which use unweighted or
static heuristics to define the weights of the edges of a line
graph, our approach learns different weights for different
edges in the line graph. A complete HAIN network can be
formed by stacking multiple such layers and then training
it on the cross entropy loss in an end to end fashion.

o Experimental comparison with state-of-the-art (SOTA)
algorithms and model ablation study show the usefulness
of HAIN and its different components. HAIN improves
the SOTA performance of hypernode classification on
multiple real-world hypergraph datasets. The source code
of HAIN is made available at https://github.com/kdmsit/
HAIN to ease the reproducibility of the results.

II. RELATED WORK

To give a brief but comprehensive idea about the existing
literature, we discuss some of the prominent works in the
following three domains.

>The term ‘Isomorphism’ is used because we use Graph Isomorphism
Network (GIN) as the basic encoder in our proposed hypergraph neural
network architecture.
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Network Embedding and Graph Neural Networks: A
detailed survey on network representation learning and graph
neural networks can be found in [28], [29]. Conventional
approaches based on random walk and matrix factorization
have been applied to both on simple graph structure [30]
and with node attributes [31], [32] for network embedding.
Effort to apply neural networks on graph structure data started
long time back in the literature [33]. Different types of semi-
supervised graph neural networks exist in the literature for
node representation and classification [1], [34]. GCN [35] is
a popular semi-supervised message-passing GNN algorithm
for node classification. GraphSAGE [5] extends GCN for
inductive node classification by employing neighborhood sub-
sampling. GAT [2] uses attention mechanism to learn the
importance of a node to determine the label of another node
in the neighborhood of it in the graph convolution framework.
Theoretical analysis on the representation power of GNNs
have been studied recently in multiple works [6], [7].

Learning on Hypergraphs: As mentioned in Section I,
many of the existing analyses on a hypergraph first transform
the hypergraph to a simple graph by clique expansion or star
expansion [12]-[14], and then do the mining on the simple
graph. Conventional analysis on simple graphs are done on
the adjacency matrix as it captures the graph structure well.
Similarly, in the hypergraph domain, higher order matrices,
called tensors [15], are used for multiple computations. A
non-negative tensor factorization approach is proposed in [16]
for clustering a dataset having complex relations (beyond
pairwise) in the form of a hypergraph. The main disadvantage
of tensor based approaches is that, mostly they assume the
hypergraph to be uniform, i.e., all the hyper edges are of equal
size. Link prediction in hypergraphs is also studied in the
literature [10]. Recently, a hypergraph based active learning
scheme is proposed in [36], which allows one to ask both
pointwise queries and pairwise queries.

Hypergraph Neural Networks: Application of graph neu-
ral networks for hypergraphs is still a new area of research.
A hypergraph neural network (HGNN) is proposed in [20]
which applies convolution on the hypergraph Laplacian. From
Eq. 10 of [20], the framework boils down to the application
of graph convolution (as proposed in [35]) on a weighted
clique expansion of the hypergraph, where the weights of the
edges of a clique are determined by the weight and degree
of the corresponding hyperedge. Assuming that the initial
hypergraph structure is weak, dynamic hypergraph neural
network [18] is proposed by extending the idea of HGNN,
where a dynamic hypergraph construction module is added to
dynamically update the hypergraph structure on each layer.
HyperGCN is proposed in [21], where the authors use the
maximum distance of two nodes (in the embedding space)
in a hyperedge as a regularizer. They use the hypergraph
Laplacian to transform a hypergraph into a simple graph
where each hyperedge is represented by a simple edge and the
edge weight is proportional to the maximum distance between
any pair of nodes in that hyperedge. Then they perform
GCN on this simple graph structure. Graph representation and
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Fig. 1: Transformation process of a graph into its line graph. (a) Represents a simple graph G. (b) Each edge in the original
graph has a corresponding node in the line graph. Here the green edges represent the nodes in line graph. (c) For each adjacent
pair of edges in G there exists an edge in L(G). The dotted lines here are the edges in the line graph. (d) The line graph

L(G) of the graph G

neural network based approaches have also been proposed
for heterogeneous hypergraph embedding [19], [27], [37]. Our
work in this paper expands the literature on hypergraph neural
network by proposing a novel GNN algorithm for hypergraphs
and improving state-of-the-art performance on multiple real-
world datasets.

III. PROBLEM STATEMENT AND NOTATIONS USED

We consider a hypergraph H = (V, E). Here V is the set
of hypernodes with E is the set of hyperedges. A hyperedge
e connects a subset of nodes. For example, if the hyperedge
e connects vy, vy and vs, it is denoted as e = {vy,va, v3}.
We also assume the hypergraph to be attributed, i.e., each
node v € V is associated with a ' dimensional feature vector
2, € RE and this forms a feature matrix X € RIVI*¥ We aim
to propose a novel graph neural network to operate directly
on the hypergraph and which can be used for semi-supervised
hypernode classification. So, we assume to have a training set
Vs C V where for each hypernode v € V?, we know the
label I, € L of it. Here, L is the set of labels. For example,
L = {—1,+1} for a binary classification. Our goal is to learn a
function f : V — L which can output label of each unlabelled
hypernode v € V% = V' \ V*°. The desired algorithm to learn
such a function f should be able to use both the hypergraph
structure, along with the node attributes.

IV. PROPOSED SOLUTION: HAIN

In this section, we discuss the details of the proposed
algorithm HAIN. It indirectly uses line graph of a hypergraph
to capture the relationships between the edges of a hypergraph.
But for the sake of presentation, we will assume it to form the
line graph explicitly and learn the weights of the edges of the
line graph. We will show the trick of avoiding the explicit
formation of the line graph at the end of Section IV-B. This
saves the expensive computation to form the line graph, but
still able to exploit it to build the network. First, we brief the
concept of line graph to make the paper self-contained.
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A. Line Graph and Extension to Hypergraphs

First, we define a line graph of a simple graph. Given a
simple undirected graph G = (V, E), the line graph L(G) is
the graph such that each node of L(G) is an edge in G and two
nodes of L(G) are neighbors if and only if their corresponding
edges in G share a common endpoint vertex [38]. Formally
L(G) = (Vi, Er) where Vi, = {(v;,v;) : (vs,v;) € E} and
Er = {((vi, ), (vj,vk)) = (viyv5) € B, (vj,u) € E}.
Figure 1 shows how to convert a graph into the line graph.

Transforming a hypergraph to its line graph [23] is also quite
similar to the case of a simple graph. Here, each hyperedge
of the hypergraph becomes a node in the line graph and two
nodes are connected in the line graph if the corresponding
hyperedges share at least one hypernode in the hypergraph.
More formally, for a given hypergraph H = (V,E) (as
discussed in Section III), the line graph L(H) = (Vi,EL)
can be defined as follows: V, = {v. | e € E}, and
Er = {{ve,,Ve,} | lep Negl > 1, e,,e4 € E}. Example of
converting a hypergraph to its line graph can be seen in Figure
2, where the input is a hypergraph with 12 hypernodes and 5
hyperedges and the corresponding line graph has 5 nodes. Each
node in the line graph has the same color as the corresponding
hyperedge in the hypergraph. One can also assign static weight
to the edges in the line graph by calculating the fraction of
common nodes between the two hyperedges. But such static
assignments are difficult to generalize. Instead, we aim to learn
the edge importance through a graph neural network.

B. Network Architecture of HAIN

In this subsection, we discuss the model update rule and the
detailed neural architecture of HAIN. For a given hypergraph
H = (V,E), with the number of hypernodes as |V| and
number of hyperedges as |E|, we assume each hypernode
is associated with some F' dimensional attribute vector. The
attribute matrix (or hypernode feature matrix) of H is denoted
as X € RIVIXF The incidence matrix H € RIVIXIEl of
the hypergraph is defined as H(i,j) = 1 if the hyperedge
j contains the hypernode i, and H(i,j) 0 otherwise.
A row of the incidence matrix gives how a hypernode is
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connected to each hyperedge of the given hypergraph. Let us
denote the hypernode degree matrix of H as Dy € RIVIXIVI,
which is a diagonal matrix with the ith diagonal element as

||

Dy (i,1) = > H; ;. Similarly, hyperedge degree matrix of the
j=1

hypergraph is Dy € RIZI*IFl which is a diagonal matrix with

14
the jth diagonal element as Dg(j,j) = g H; ;. Next, we aim
to convert the given hypergraph to its liﬁglgraph (as discussed
in Section IV-A), but within a layer of neural network as
discussed below.

The adjacency matrix of the line graph of a given hyper-
graph contains information on how the nodes of the line graph
(or equivalently hyperedges of the hypergraph) are connected
to each other. A weighted version of the adjacency matrix of
the line graph can be formed as A, = H'H < RIPIXIE
Please note, it implicitly assumes that the nodes of the line
graph contain self-loops. In this formulation of line graph,
Ar(i,j) = |le; Nejl, ie., the number of common hypernodes
contained between the hyperedges e; and e; of the hypergraph.
But then, the weight of an edge that connects two high degree
hyperedges tends to be very high in the line graph. To avoid
that, we use row normalization and the column normalization
of the incidence matrix H to form the adjacency matrix Aj,
of the line graph as:

Ap =Dg'H'DyH € RIFIXIE (1

We assign features to each node of the line graph, again in
the form of matrix multiplication as, X;, = H TX e RIEIXF,
If edge features of the hypergraph is available, those can also
be directly used as the node features of the line graph.

Next, we choose Graph Isomorphism Network (GIN) [6]
as the base GNN on the line graph. GIN has become the
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state-of-the-art graph neural network both due to its theoretical
guarantee to represent graphs and experimental superiority.
GIN has traditionally been used for graph classification pur-
pose, but we achieve improved results by using it (along with
the self-attention strategy to be discussed next) for hypernode
classification®. The basic node feature update rule of the Ith
layer of a GIN for a general graph can be written as,

ol = 0’((1 + el)WlTxi) + Z WlTxZ)
weN (v)
Z WlTxﬁ + elWlT:ri)
weN (v)U{v}

2

Here, xfjﬂ € R¥ is the hidden representation of the node v
in (I + 1)th layer of GIN and K is the feature dimension of
the hidden layers of GIN. N (v) is the neighbors of the node
v. € is a parameter of GIN which determine the importance of
a node’s own representation with respect to the aggregated
representation of its neighbors. W' is a trainable feature
transformation matrix. We use a single layer neural network
with a non-linear activation function o, which is ReLU in all
our experiments. Equation 2 can be written in the matrix form
as X' = o (AX! + € XY)W!), where A is the adjacency
matrix of the graph with added self-loops.

Now for the purpose of hypernode representation of the
given hypergraph H = (V| E), we seek to update the feature
matrix X via the node of the line graph. Hence, the hypernode

3However, one can easily replace GIN with any other GNN in our
framework.
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features can be updated as follows:

XH = o(HALHTX + dHT XYW
=o(H(ALX} +XLyw!) e RIVIX

Fl+1

3)

Here, H” X! is the node feature matrix of the line graph
derived from the updated features (by (I — 1)th layer) of
the hypernodes of the hypergraph. For the sake of notational
convenience, we denote X! = HT X' The leftmost H of
Equation 3 maps the updates node features from line graph to
the hypergraphs. Equation 3 is essentially to form a line graph
with normalized edge weights, and then running GIN there,
and transferring the updated node features from line graph to
the hypergraph. Here, Ay is the weighted adjacency matrix of
the line graph as formed in Equation 1. We assume Fj to be
the dimension of the hypernode features at the [the layer of
HAIN, [ = 0,1,--- ,L — 1. We assume, X9 = X = HTX
is the initial feature matrix. W' € RF:>*Fi+1 and € € R are
the trainable parameters.

But the main drawback of this strategy is the use of a
static line graph. The weight of the edge between any two
node in the line graph in Equation 3 is just the normalized
number of common nodes between the two corresponding
hyperedges. But this static weight assignment does not count
for the node features and their updates over the layers of
the proposed GNN. Besides, existing works on simple graph
embedding has shown that not all the edges are equally
important for node representation learning [2]. Hence, for
hypernode representation, we aim to learn different weights
for different hyperedges. This reduces to associate different
importance (weights) to different nodes in the line graph. We
use a self-attention strategy [39] to learn them, as follows.

X! (ith row of X[*') is the updated feature of the
ith node in the line graph, which is formed by aggregat-
ing neighborhood features through the graph neural network
structure. We introduce an attention vector ¢!, € RI
Clearly, oa(X40',,) € RIFl contains the importance of
each hyperedge in the given hypergraph based on the updated
hypernode features at each layer [ of the network. og is
a non-linear activation function, for which we use softmax.
We assume D(-) to be a diagonal operator which takes a | F|
dimensional vector and converts it to a |E| x | E| dimensional
diagonal matrix with the vector being set to the diagonal.
Thus, ArLD (0 (X10,,)) can be considered as the learned
adjacency matrix of the line graph where values are scaled
according to the importance of hyperedges of the hypergraph.
Hence, the hypernode feature update rule for the [th layer
™M =0,1,--- ,L — 1) of HAIN can be written as:

X = U<H(ALD(0att(Xng¢lztt)) Xp, + EleL)Wl> @

Scaled adjacency matrix

As explained before, Xt = HTX! and X° = X (input
hypergraph attribute matrix). We write the final update rule for
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the [-th layer of HAIN as a function of the input hypergraph
and the previous layers, by expanding Ay and X below.

X1 = a(H(DElHTDleD(Uatt(HTXlefltt))HTXl

+ elHTXl)Wl> e RIVIXF )
Equation 5 is insightful from a computational perspec-
tive. It contains a chain of matrix multiplications. If we
choose to solve it from right-to-left order (which also
turns out to be optimal in runtime, as discussed in Sec-
tion IV-C2), we never need to compute the adjacency
matrix of the given hypergraph explicitly. To clarify, let
us consider the first term of the summation, which is
HDZ"H' Dy HD (00 (HTX'0,,)) HT X'W'. So, we start
multiplying X'W!, then multiplying H” with the resulting
matrix, and so on. Following this order, we never compute
D;H TD‘le to form the expensive line graph Ay, which
needs O(|E|?|V|) time. But interestingly, we are able to
complete all the operations we intended to do on the explicit
line graph.

The overall work flow of a layer of HAIN is summarized in
Figure 2. The final hypernode features obtained from HAIN
are fed to a softmax layer and use the following cross entropy
loss on the training set for hypernode classification.

Loss = — Z Zyv,k In gy &

vEVS kel

Here, y, is an indicator function if the actual label of a
hypernode v in V* of the hypergraph is k, and ¥, is the
probability with which the hypernode v has the label k£ from
the output of softmax function. We use back-propagation
algorithm with ADAM optimization technique [40] on the
cross entropy loss to learn the parameters of the HAIN in
an end-to-end fashion.

C. Key Analysis and Complexity of HAIN

It can be noted that compared to conventional learning
approaches on hypergraph, HAIN has multiple advantages.
HAIN can handle non-uniform hypergraphs (i.e., hypergraphs
with varying hyperedge sizes). In contrast to some existing
graph representation techniques which employ the line graph,
either as a separate stage [26], or store both the original and
the line graph separately [24], [41], we do not need to keep the
line graph explicitly in HAIN. This can be seen in Equation 5
where all the terms are part of the input hypergraph or some
previous layer of HAIN. Also as explained above, the way
we compute X'*1 in Equation 5, we never actually form the
line graph explicitly (please see Section IV-C2). This helps
to reduce the space to store line graph separately and also
to improve the scalability of HAIN. However, the analysis
of HAIN with respect to the line graph gives cleaner insight
about the approach. Moreover, we scale the values of the
adjacency matrix of the line graph via self attention. This leads
to learning the edge weights (structure) of the line graph rather
than using unweighted or static strategy to set the edge weights
as done in many existing literature [22], [26].

(6)
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1) Number of trainable Parameters: In lth layer of HAIN,
there are three sets of trainable parameters: ¢/ € R and
W e RFxFisr and ¢!, € R Thus, for a HAIN
with L layers, the total number of trainable parameters is

L—1 L—-1
O( Z Fl(Fl+1 + 1)) As
=0

> (1+F x g+ R)

tlHe input and intermediate feature dimensions are small, and
the number of trainable parameters do not depend on the
number of hypernodes or the number of hyperedges of the
given hypergraph, HAIN can be trained efficiently.

2) Time Complexity: The order of matrix multiplication is
important to optimize the runtime of HAIN in Equation 5.
As discussed before, we adopt right-to-left matrix multiplica-
tion strategy, as the matrix X' € RIVI*Fi has the smallest
dimension compared to others. For example, multiplying the
diagonal matrix D (o, (HT X6 ,,)) with HT X! would take
O(|E||V|+ |E|F;) time, and further left multiplying this with
H € RIVIXIEl takes O(|V||E|F;) time. Following this strat-
egy, the total time to compute X'*! takes O(|V||E|FiFj41).
Hence, time complexity of one full forward pass of HAIN

L-1

with L layers is O(|V|| E| i F;Fy+1). The hypernode feature

dimensions Fj, VI are srln_eﬁl, and typically for real-world
hypergraphs, O(|E|) = O(]V]). For example, in a citation
hypergraph network, each paper (which is a hypernode) in-
duces only one hyperedge which contains all the papers it cites
[21]. Thus, |V| = |E| for this. Besides, the final update rule
of HAIN can be implemented by any state-of-the-art highly
efficient and parallelizable matrix multiplication library. As
mentioned at the end of Section IV-B, with this strategy of
computing X'*!, we never compute or store the adjacency
matrix Ay, = D' HT D' H € RIFIXIEl of the line graph.
Hence, HAIN is highly scalable to large real-world hypergraph
networks.

V. EXPERIMENTAL EVALUATION

We experiment on four publicly available popular network
datasets for node classification and compare the results with
state-of-the-art hypergraph neural networks. Please note that as
the inherent objective of HAIN is semi-supervised in nature,
we do not conduct experiment on unsupervised tasks such
as hypernode clustering and hyperedge prediction. This is
consistent with the recent hypergraph neural network literature
[20], [21].

A. Baseline Algorithms and Model Ablation Study

We have selected the following set of diverse state-of-the-
art algorithms * to compare with the results of the proposed
algorithm HAIN.

o Confidence Interval based method (CI) [11]: Authors
have proposed a semi-supervised learning approach on
hypergraphs and design an algorithm for solving the
convex program based on the subgradient method.

#We did not use those GNNs as baselines which either cannot work on
hypergraphs directly [2], [35] or cannot handle hypergraphs of varying edge
sizes [19].
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o Multi-layer perceptron (MLP): This is a classical MLP
which only uses the node attributes for node classification
problem. The hypergraph structure is completely ignored
here.

o MLP + explicit hypergraph Laplacian regularisation
(MLP + HLR): Here the MLP is used along with an
added component to capture the hypergraph Laplacian
regularizer [21].

o Hypergraph Neural Networks: We use recently pro-
posed state-of-the-art hypergraph neural networks like
HGNN [20], DHGNN [18] and HyperGCN [21] with
its variants.

To avoid any deterioration of performance of the baseline al-
gorithms due to insufficient hyperparameter tuning, we report
the hypernode classification results of the baseline algorithms
(except for DHGNN) directly from [21] as our experimental
setting is exactly the same as in there. As the results of
DHGNN [18] on most of the datasets we used were not
publicly available, we extensively tune the hyperparameters
of DHGNN and report the test accuracy (averaged over 10
independent runs) corresponding to the best validation accu-
racy in Table II. More details on the experimental set up is
presented in Sections V-B and V-C.

HAIN implicitly translates a given hypergraph to its line
graph and then scale the edge weights of the line graph
through self-attention before aggregating node features from
the neighborhood using GIN. To show the benefit of each
of these steps in HAIN, we do the following model ablation
studies.

o Star-GIN: This is to translate a given hypergraph to a
simple graph by star expansion and then run GIN on that.

o Clique-GIN: This is to translate a given hypergraph to a
simple graph by clique expansion and then run GIN on
that.

o Static-HAIN: This algorithm is obtained by removing
the self-attention component which is used to learn the
edge weights in the line graph. Thus, /th layer of this
algorithm is equivalent to Equation 3.

The results of the above three algorithms are also presented,
along with the other baselines.

B. Datasets and Experimental Setup

We use three co-citation network datasets: Cora, Citeseer
and Pubmed. We keep all the nodes of the original network
in the hypergraph. If a research paper ‘a’ cites the papers
‘b’,‘c’ and ‘d’, then we create a hyperedge {a,b,c,d} in the
hypergraph. Each node in these datasets is associated with an
attribute vector. Attributes represent the occurrence of a word
in the research paper through bag-of-words models. For Cora
and Citeseer the attributes are binary vector and for Pubmed,
they are tf-idf vectors. For the DBLP network, all documents
co-authored by an author are in one hyperedge. High level
summary of these datasets are presented in Table I.

For the experiments on hypernode classification in Section
V-C, we adopt the same experimental setup as discussed in the
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Cora Citeseer Pubmed DBLP
(co-citation)  (co-citation)  (co-citation)  (Co-authorship)
No of hypernodes 2708 3312 19717 43413
No of hyperedges 1579 1079 7963 22535
Avg. hyperedge size 3.0£ 1.1 32+£20 43 +£5.7 4.7 6.1
No of features 1433 3703 500 1425
No of Classes 7 6 3 6

TABLE I: Co-citation and co-authorship

hypergraph datasets used in this work.

Method Cora Citeseer Pubmed DBLP
(co-citation) (co-citation) (co-citation) (Co-authorship)
CI 35.60 £ 0.8 29.63 £ 0.3 47.04 + 0.8 45.19 £ 0.9
MLP 57.86 + 1.8 58.88 £ 1.7 69.30 + 1.6 6223 £ 2.0
MLP+HLR 63.02 + 1.8 6225 + 1.6 69.82 + 1.5 69.58 + 2.1
HGNN 67.59 + 1.8 62.60 + 1.6 70.59 + 1.5 74.35 + 2.1
DHGNN 78.8 £ 125 6345+ 1.17 713 £ 1.33 74.65 + 1.85
1-HyperGCN 65.55 + 2.1 61.13 £ 1.9 69.92 + 1.5 66.13 + 2.4
FastHyperGCN 67.57 £ 1.8 62.58 + 1.7 70.52 £ 1.6 72.66 £+ 2.1
HyperGCN 67.63 £ 1.7 62.65 £ 1.6 7444 £ 1.6 7591 +£ 2.0
Star-GIN 75.19 £ 1.41 64.17 £ 0.73 7691 + 0.67 76.71 &+ 0.85
Clique-GIN 76.38 + 1.24 6423 £ 095 74.59 +0.83 77.23 + 097
Static-HAIN 77.17 £ 1.17  66.51 £ 0.83  76.25 + 0.77 79.13 + 0.95
HAIN 80.15 £ 1.71 68.89 + 0.90  79.60 + 0.67 81.69 + 0.70

TABLE II: Results of hypernode classification (accuracy with standard deviation in %).

recent state-of-the-art [21]. To summarize, for each dataset, we
take 5% hypernodes from each class in the training, 10% for
validation and the remaining 85% for testing. This ensures
that the training set is balanced with respect to the hypernode
labels present in the respective datasets. For the experiments
on the sensitivity analysis with respect to different training
sizes in Sections V-D, we split each dataset into training and
test sets, without doing any extra validation. We also keep the
other hyperparameters same across those experiments to see
the effect of only one hyperparameter.

For HAIN and the three variants (under model ablation
study), we decrease the learning rate of the ADAM optimizer
after every 100 epochs by a factor of 2. We use only 1 layer of
HAIN and variants and keep the hidden dimension as 256. The
initial learning rate is set to 0.03 and we train the algorithms
for 200 epochs. We perform the experiments in a shared server
having Intel(R) Xeon(R) Gold 6142 processor which contains
64 processors with 16 core each.

C. Performance on Hypernode Classification

We run HAIN and its variants 10 times on each dataset
and report the average hypernode classification accuracy and
standard deviation on the test sets in Table II. First, it can be
observed that all the GNN based approaches perform better
than the first three baselines almost on all the datasets. HAIN
turns out to be the best performing algorithm on all the
datasets with significant improvement gap compared to the
state-of-the-art GNN algorithms. HAIN is able to outperform
the closest baseline DHGNN by roughly 2% on Cora and 9%
on Citeseer and the closest baseline HyperGCN by roughly
6% on Pubmed and 7% on DBLP. The standard deviation
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of the performance of HAIN is also comparable or less than
the baselines in most of the cases, which shows the stability
and robustness of the proposed algorithm HAIN. Please note
that the accuracy numbers of the baseline algorithms (as
mentioned in [21]) and HAIN with its variants can improve
if we add simple edges of the co-citation networks in the
datasets, along with the hyperedges formed. But we still use
the conventional formation of hypergraph networks to make
the experimental comparisons consistent with the existing
state-of-the-art hypergraph algorithms.

Usefulness of different components of HAIN can be seen by
comparing the performance with the three variants as part of
model ablation study. As expected, Star-GIN performs poorly
as it creates a bipartite graph which is also heterogeneous
in nature. The performance of Clique-GIN and Static-HAIN
are comparable, with Static-GIN performing slightly better
on Cora, Citeseer and DBLP. But the performance of HAIN
is significantly better than Static-HAIN, which shows the
importance of learning the edge weights of the line graph
through self-attention mechanism, rather than using static
normalized edge weights. HAIN and its variants are all GIN
based hypergraph neural networks. Whereas, baselines such
as HGNN and HyperGCN are based on GCN [35]. Better
performance of Star-GIN or Clique-GIN compared to existing
baselines also explains the right choice of GIN over GCN as
the base GNN for hypernode classification.

D. Further Results on Classification and Sensitivity Analysis

Convergence of loss in HAIN: Convergence of training
loss over the epochs is important to understand the stability
of the results. Figure 3a shows that training losses of HAIN
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Fig. 3: (a) Shows HAIN training Loss over different epochs of the algorithm. (b) Training time of different approaches on four

datasets.
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Fig. 4: (a) Shows node classification accuracy over different
different embedding dimensions.

over all the datasets are decreasing fast at the beginning and
converge at the end. This is due to the use of ADAM and our
strategy to decrease the learning rate after every 100 epochs
of HAIN.

Training time of HAIN and variants: We have shown
the training time of HAIN and the three related algorithms
in Figure 3b. As expected, Star-GIN takes the least time
as star expansion of a hypergraph is fast. But as shown in
Table II, Star-GIN performs poorly on all the datasets. Static-
HAIN takes less training time than HAIN as it does not use
the self-attention mechanism to learn the edge weights in
the line graph. Clique-GIN is the most expensive algorithm
among them, as clique expansion is computationally heavy
for hypergraphs and the resultant simple graph is also large.

Learning Pattern of HAIN: In Figure 4a, we change the
training size from 1% to 40%, and remaining is the test set.

676

100
—— Cora
95 Citeseer
90 —— pubmed
. —— dblp
I 85
J 80
o
3 75
[}
< 70
65
60
3264 128 256 512
Embedding Dimension
(b)

train-test sizes, (b) Shows node classification accuracy over

We keep the training set balanced with respect to different
class labels. We can see that the hypernode classification
performance of HAIN improves significantly over increasing
training set at the beginning, while almost saturates after
10%, for all the datasets. It shows that HAIN, being a semi-
supervised algorithm, can work well with very less number of
labeled hypernodes.

Sensitivity w.r.t. embedding dimension: HAIN maps the
hypernodes to F;, dimensional space before feeding them to
the softmax layer. We vary this hidden layer dimension and
plot the hypernode classification accuracy on all the datasets
in Figure 4b. If the hidden layer dimension is not sufficiently
large, it cannot capture enough information to represent the
hypernodes. Figure 4b also shows the same where accuracy
improves till dimension 128, beyond which the accuracy
saturates. The analysis in this section also shows the consistent
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(a) HyperGCN on Cora

(b) HAIN on Cora

(c) HyperGCN on Citeseer (d) HAIN on Citeseer

Fig. 5: t-SNE visualization of the hypernode representations (best seen in colors): There are 7 classes in Cora and 6 in Citeseer.
These classes are coming more prominently by HAIN compared to that by HyperGCN.

behavior of HAIN across all the datasets, which is important
to use it as a baseline algorithm in practice.

E. Hypernode Visualization

HAIN is trained on the cross-entropy loss of hypernode
classification, but vector representations of the hypernodes
can be obtained from the output of the final layer of HAIN
(before the softmax layer). We use t-SNE [42] which maps
the vectors to two dimensional space to plot and visually
see the quality of the embeddings. We show the hypernode
visualization of HAIN and HyperGCN, only on Cora and
Citeseer in Figure 5. Different colors represent different node
classes. We can observe that cluster of points mostly belong
to the same class in the visualization of HAIN compared
to that in HyperGCN. This observation is consistent with
the performance of HyperGCN and HAIN for hypernode
classification in Table II.

VI. CONCLUSION

In this work, we proposed a novel hypergraph neural
network, referred as HAIN, for semi-supervised hypernode
classification. In each layer of HAIN, the input hypergraph is
implicitly transformed to a line graph whose edge weights are
learned by a self-attention mechanism based on the updated
hypernode features and GIN is applied there for neighborhood
attribute aggregation. All the parameters of a HAIN network
with multiple layers can be learned from an end-to-end fash-
ion. The main advantage of HAIN is that, we never have to
explicitly compute and store the expensive line graph, and thus
it is scalable to large hypergraphs. Experimentally, HAIN is
able to improve the state-of-the-art hypernode classification
performance on all the datasets we use. Model ablation study
shows the usefulness of each component of HAIN through
experiments. As the domain of hypergraph neural network is
still new, HAIN can encourage further development of novel
algorithms and analysis towards this direction.
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