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Crystal Property Prediction

e Given a crystal material’s 3D structure, predicting different properties is a challenging
and important task in material science.

e Density functional theory (DFT) [Orio et al., 2009] : an effective tool to estimate
several materials’ Properties. But DFT require substantial computational costs.

e Recent times, data driven approaches emerged as an effective tool for predicting
crystal properties which are as accurate as DFT, however, much faster than it.

e Majority of the existing approaches, constructs graphs by establishing edges only
between nearby atoms and use deep graph neural network to learn crystal structure
representation



Limitations of Existing Works
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Problem Statement

Can we leverage a large amount of untagged material structures to pretrain a Deep
GNN model which learn the complex hidden features which otherwise are difficult to
identify?




Pretraining GNN
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Proposed Methodology

e We developed a pre-trained GNN model (CrysGNN) for Crystalline materials, which captures
both local (node level) chemical and global (graph level) structural semantics of crystal
graphs.

e \We curate a new large untagged crystal dataset with 800K crystal graphs to pretrain
CrysGNN.

e We introduce a self supervised graph pre-training method which captures (a) connectivity of
different atoms, (b) different atomic properties and (c) graph similarity from a large set of
unlabeled crystal graph data.

e Subsequently we distill important structural and chemical information of a crystal from the
pre-trained CrysGNN model and pass it to the property predictor.

e Retrofit the pre-trained CrysGNN model into any existing state-of-the-art property predictor, to
improve their property prediction performance.



Multi-Graph Construction of Crystal
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CrysGNN: Node Level Pre-training
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CrysGNN: Graph Level Pre-training
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we adopt supervised and contrastive learning to learn structural
similarities between graph structures using the space group and
crystal system information of the materials respectively.




CrysGNN: Graph Level Pre-training
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Distillation and Property Prediction
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Dataset Details

Table 1: Datasets Details

Task | Datasets | Graph Num. | Structural Info. | Properties Count |  Data Type
Pro-train; OQMD 670K v X DFT Calculated
C-ATANME | Materials Project 130K % X DFT Calculated
Property MP 2018.6.1 69K v 2 DFT Calculated
(Prediction) JARVIS(2018.6.1) 55K v 19 DFT Calculated
REIChen OQMD-EXP 1.5K v 1 Experimental




Downstream Task Evaluation

) ) ) )

Property CGCNN CGCNN CrysXPP CrysXPP GATGNN GATGNN ALIGNN ALIGNN

(Distilled (Distilled) Distilled) (Distilled)
Formation Energy 0.039 0.032 0.041 0.035 0.096 0.091 0.026 0.024
Bandgap (OPT) 0.388 0.293 0.347 0.287 0.427 0.403 0.271 0.253
Formation Energy 0.063 0.047 0.062 0.048 0.132 0.117 0.036 0.035
Bandgap (OPT) 0.200 0.160 0.190 0.176 0.275 0.235 0.148 0.131
Total Energy 0.078 0.053 0.072 0.055 0.194 0.137 0.039 0.038
Ehull 0.170 0.121 0.139 0.114 0.241 0.203 0.091 0.083
Bandgap (MBJ) 0.410 0.340 0.378 0.350 0.395 0.386 0.331 0.325
Spillage 0.386 0.374 0.363 0.357 0.350 0.348 0.358 0.356
SLME (%) 5.040 4.790 5.110 4.630 5.050 4.950 4.650 4.590
Bulk Modulus (Kv) 12.45 12.31 13.61 12.70 11.64 11.53 11.20 10.99
Shear Modulus (Gv) 11.24 10.87 11.20 10.56 10.41 10.35 9.860 9.800

— — — —

Table 2: Summary of the prediction performance (MAE) of different properties in Materials project (Top) and JARVIS-DFT
(Bottom). Model M is the vanilla variant of a SOTA model and M (Distilled) is the distilled variant using the pretrained CrysGNN.
The best performance is highlighted in bold.



Downstream Task Evaluation

e Distilled version of any state-of- the-art model outperforms the vanilla model across all the
properties.

e Average relative improvement across all properties for ALIGNN (4.19%) and GATGNN (8.02%) is
lesser compared to CGCNN (16.20%) and CrysXPP (12.21%).

e Possible reason : ALIGNN and GATGNN are more complex models that CrysGNN.

e Potential Improvement : Incorporating angle-based information or attention mechanism as a part of
pre-training framework may improve further.



Comparison with Existing Pre-trained Models.

e Demonstrate the effectiveness of the
knowledge distillation method vis-a-vis the
conventional fine-tuning approaches.

e \We finetune CrysGNN and compare with
distilled CGCNN, CrysXPP and pretrain GNN
by hu et.al.

e Encoding architecture is same for CrysGNN,
CGCNN, and CrysXPP (pretrained-finetuned
version of CGCNN)

e Distilled CGCNN outperforms finetuned
version of CrysGNN and both the baselines

Property CGCNN CrysGNN  CrysXPP  Pretrain
(Distilled) (Finetuned) -GNN

Formation Energy 0.047 0.056 0.062 0.764
Bandgap (OPT) 0.160 0.183 0.190 0.688
Total Energy 0.053 0.069 0.072 1.451
Ehull 0.121 0.130 0.139 1.112
Bandgap (MBJ) 0.340 0.371 0.378 1.493
Bulk Modulus (Kv) 12.31 13.42 13.61 20.34
Shear Modulus (Gv) 10.87 11.07 11.20 16.51
SLME (%) 4.791 5.452 5.110 9.853
Spillage 0.354 0.374 0.363 0.481

Table 3: Comparison of the prediction performance (MAE)
of seven properties in JARVIS-DFT between CrysGNN and
existing pretrain-finetune models, the best performance is
highlighted in bold.




Effectiveness on sparse training dataset.

Property  Train-Val-Test ALIGNN ALIGNN CGCNN CGCNN CrysXPP CrysXPP GATGNN GATGNN

(%) (Distilled) (Distilled) (Distilled) (Distilled)
Hhanliean 20-10-70  0.497 0.485(2.53) 0.588 0.453* (23.04) 0.598 0.450% (24.82) 0.541 0.521 (3.70)
At 40-10-50 0404 0.395(2.20) 0.532 0.419% (21.41) 0.496 0.405% (18.40) 0.462 0.448* (2.81)
(MBJ) 60-10-30  0.387 0.380(1.98) 0449 0.364(19.08) 0.435 0.360(17.36) 0.449 0.439 (2.29)

Bulk Modulus  20-10-70 1470 1406 (4.35) 1691 16.26(380) 1542 1425%(7.59) 14.80 14.19 (4.12)
(Kv)  40-10-50 1247 12.11(2.89) 1481 14.46(236) 15.13 14.02%(7.34) 12.98 1259 (3.00)

- 60-10-30 1123 11.01(1.96) 1423 14.05(1.26) 14.76 13.73(6.98) 12.01 11.75(2.16)

Shear Modulus 201070 1271 1231(3.15) 1389 1250(10.01) 13.39 1207*(9.86) 12.83 1242(3.20)

“Gvy 401050 1098 10.67(2.82) 1204 1L54* (415 12.16 1101*(946) 1143 1123(1.75)
60-10-30 1024 10.04(1.95) 1175 1131(3.74) 11.77 10.67(9.35) 10.65 10.47 (1.69)




Removal of DFT error bias using experimental data

Experiment Settings CGCNN CGCNN CrysXPP CrysXPP GATGNN GATGNN ALIGNN ALIGNN
(Distilled) (Distilled) (Distilled) (Distilled)
Train on DFT 0.265 0.244 (7.60) 0.243 0.225 (7.40) 0.274 0.232(15.3) 0.220 0.209 (5.05)

Test on Experimental
Train on DFT and 20 % Experimental 0.144 0.113 (21.7) 0.138 0.118 (14.2) 0.173 0.168 (2.70) 0.099 0.094 (5.60)
Test on 80 % Experimental

Train on DFT and 80 % Experimental 0.094 0.073 (22.7) 0.087 0.071 (18.4) 0.113 0.109 (3.40) 0.073 0.069 (5.90)
Test on 20 % Experimental

Table 5: MAE of predicting experimental values by different SOTA models and their distilled versions with full DFT data and
different percentages of experimental data for formation energy in OQMD-EXP dataset. Relative improvement in the distilled
model is mentioned in bracket.



Conclusion

e In this work, we present a novel but simple pre-trained GNN framework, CrysGNN, for
crystalline materials.

e Captures both local chemical and global structural semantics of crystal graphs, using node
and graph level pre-training respectively

e We curate a new large untagged crystal dataset with 800K crystal graphs to pretrain
CrysGNN. We will release the pre-trained model along with the large dataset for the community.

e We distill important knowledge from CrysGNN and inject it into different state of the art
property predictors and enhance their performance. We believe this approach can have
applications in other domains too.

e Extensive experiments show its superiority over conventional fine-tune models and its inherent
ability to remove DFT-induced bias.

Github Repo for CrysGNN : https://github.com/kdmsit/crysgnn
Github Repo for 800K Dataset :_https://github.com/kdmsit/crystal_untagged 800K
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