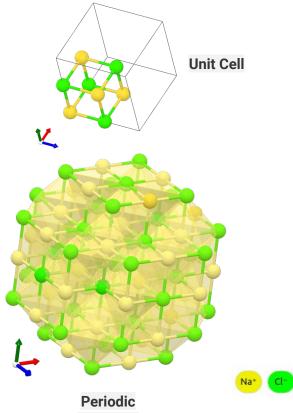
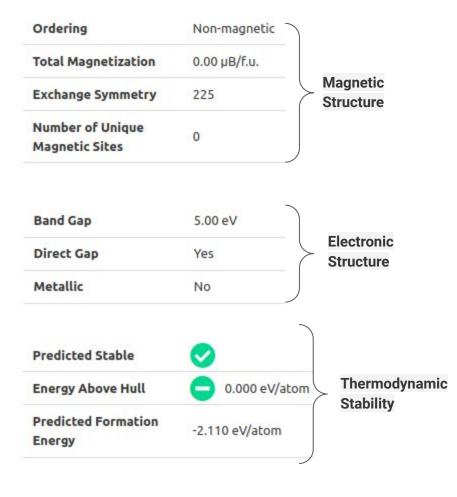
CrysGNN: Distilling pre-trained knowledge to enhance property prediction for crystalline materials.

<u>Kishalay Das</u>¹, Bidisha Samanta¹, Pawan Goyal¹, Seung-Cheol Lee², Satadeep Bhattacharjee²,Niloy Ganguly^{1,3}

> ¹Indian Institute of Technology Kharagpur, India ²Indo Korea Science and Technology Center, Bangalore, India. ³L3S, Leibniz University of Hannover, Germany.

Crystalline Material





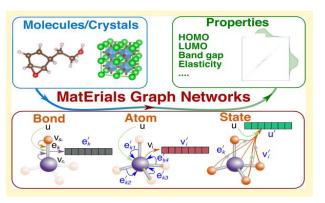
Structure

Crystal Property Prediction

- Given a crystal material's 3D structure, predicting different properties is a challenging and important task in material science.
- **Density functional theory (DFT)** [Orio et al., 2009] : an effective tool to estimate several materials' Properties. But DFT require substantial **computational costs**.
- Recent times, data driven approaches emerged as an effective tool for predicting crystal properties which are **as accurate as DFT**, however, **much faster** than it.
- Majority of the existing approaches, constructs graphs by establishing edges only between nearby atoms and use deep graph neural network to learn crystal structure representation

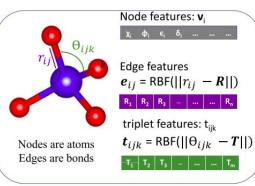
Limitations of Existing Works

Incorporating specific domain knowledge into a deep encoding module.

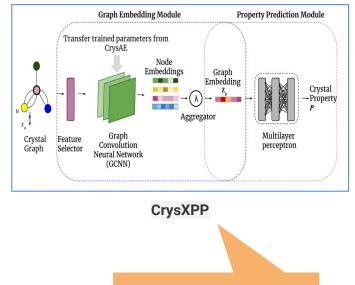


GNN Based Approaches construct graphs by creating

edges only between atoms within a pre-specified distance threshold (8 Amstrong)



ALIGNN - Incorporates bond angular information into their encoder module to capture many body interactions between atoms



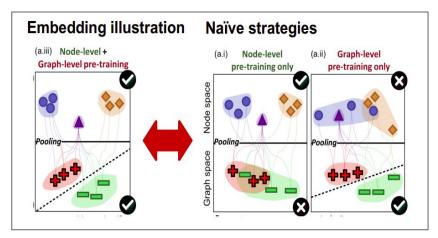
CrysXPP/ ElemNet - adopt the concept of **transfer learning** to mitigate the data sparsity issue across properties.

Problem Statement

Can we leverage a large amount of untagged material structures to pretrain a Deep GNN model which learn the complex hidden features which otherwise are difficult to identify?

Pretraining GNN

- Prior works focus on molecular and biological dataset, which is difficult to extend directly to crystalline material.
- Structural semantics are different between molecules and materials.
- For graph-level pre-training —> supervised property prediction using a huge amount of labelled dataset -> less effective in material science where property labeled data is extremely scarce.
- Conventional pre-train fine tuning framework limits knowledge transfer capability of the pre-trained model if the downstream task and dataset is different.

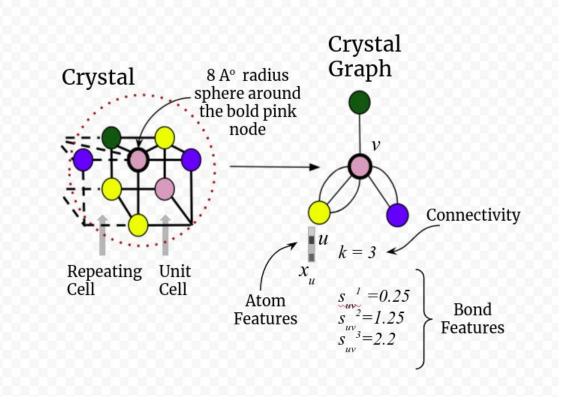


Hu et al. Strategies for Pre-training Graph Neural Networks. (ICLR-2020) : Node-level and graph-leve pre-training on GNNs to capture domain specific knowledge about nodes and edges, in addition to global graph-level knowledge. They perform pretraining on large dataset of chemical and biological dataset.

Proposed Methodology

- We developed a **pre-trained GNN model (CrysGNN)** for Crystalline materials, which captures both **local (node level) chemical** and **global (graph level) structural** semantics of crystal graphs.
- We curate a new large untagged crystal dataset with 800K crystal graphs to pretrain CrysGNN.
- We introduce a **self supervised graph pre-training** method which captures (a) connectivity of different atoms, (b) different atomic properties and (c) graph similarity from a large set of unlabeled crystal graph data.
- Subsequently we **distill** important **structural and chemical information** of a crystal from the pre-trained CrysGNN model and pass it to the property predictor.
- **Retrofit** the pre-trained CrysGNN model into any existing state-of-the-art property predictor, to improve their property prediction performance.

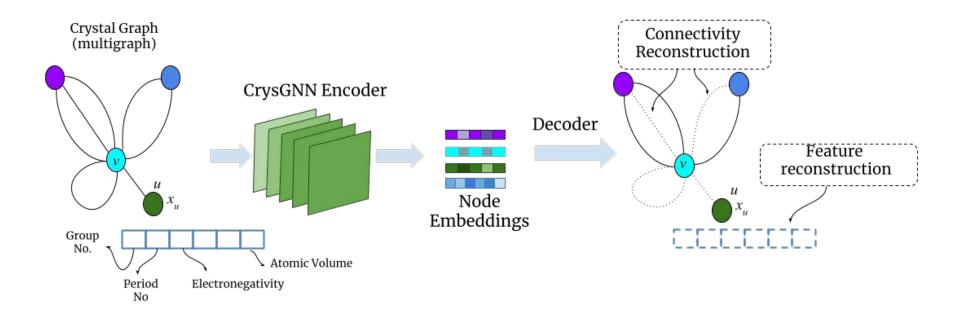
Multi-Graph Construction of Crystal



Atom Features

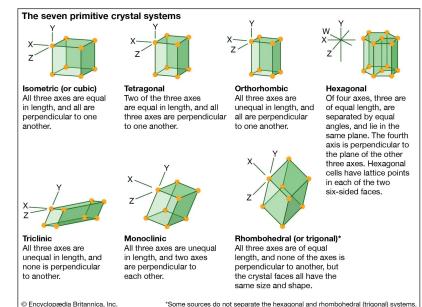
Features	Range of Values	Dimension 18		
Group Number	1,2,, 18			
Period Number	1,2,, 9	9		
Electronegativity	0.5-4.0	10		
Covalent Radius	25-250	10		
Valence Electrons	1, 2,, 12	12		
First Ionization Energy	1.3-3.3	10		
Electron Affinity	-3–3.7	10		
Block	s, p, d, f	4		
Atomic Volume	1.5 - 4.3	10		

CrysGNN: Node Level Pre-training



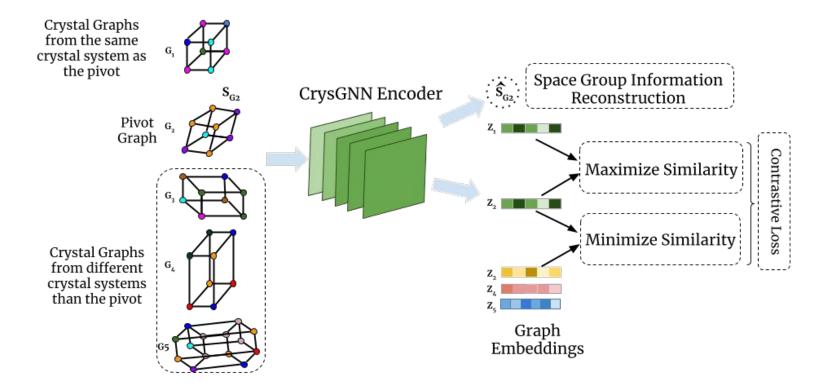
CrysGNN: Graph Level Pre-training

- Space group of Crystal Structure :
 - Describe the symmetry of a unit cell of the crystal material.
 - Each crystal has a unique space group number.
 - 230 unique space groups
- Crystal System:
 - Space group level information can classify a crystal graph into 7 broad groups of crystal systems.

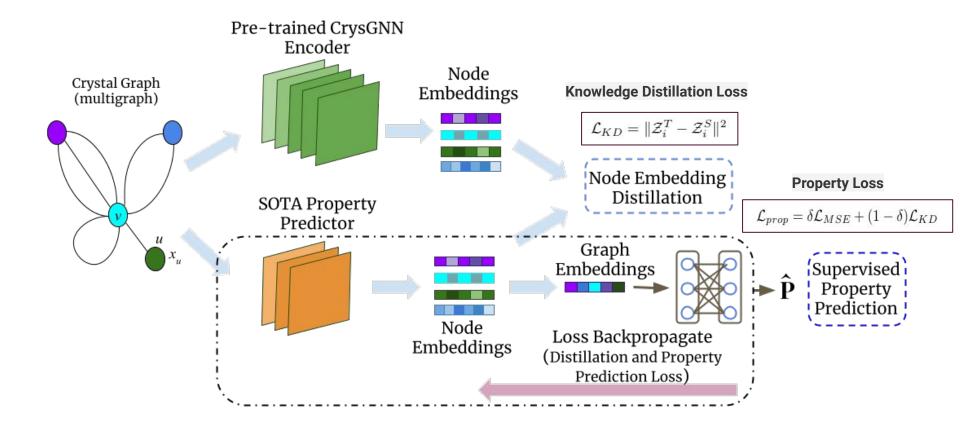


we adopt **supervised** and **contrastive learning** to learn **structural similarities** between graph structures using the **space group and crystal system information** of the materials respectively.

CrysGNN: Graph Level Pre-training



Distillation and Property Prediction



Dataset Details

Task	Datasets	Graph Num.	Structural Info.	Properties Count	Data Type
Pre-training	OQMD Materials Project	670K 130K	√ √	x x	DFT Calculated DFT Calculated
Property (Prediction)	MP 2018.6.1 JARVIS(2018.6.1) OQMD-EXP	69K 55K 1.5K	√ √ √	2 19 1	DFT Calculated DFT Calculated Experimental

Table 1: Datasets Details

Downstream Task Evaluation

Property	CGCNN	CGCNN (Distilled)	CrysXPP	CrysXPP (Distilled)	GATGNN	GATGNN (Distilled)	ALIGNN	ALIGNN (Distilled)
Formation Energy Bandgap (OPT)	0.039 0.388	0.032 0.293	0.041 0.347	0.035 0.287	0.096 0.427	0.091 0.403	0.026	0.024 0.253
Formation Energy	0.063	0.047	0.062	0.048	0.132	0.117	0.036	0.035
Bandgap (OPT)	0.200	0.160	0.190	0.176	0.275	0.235	0.148	0.131
Total Energy	0.078	0.053	0.072	0.055	0.194	0.137	0.039	0.038
Ehull	0.170	0.121	0.139	0.114	0.241	0.203	0.091	0.083
Bandgap (MBJ)	0.410	0.340	0.378	0.350	0.395	0.386	0.331	0.325
Spillage	0.386	0.374	0.363	0.357	0.350	0.348	0.358	0.356
SLME (%)	5.040	4.790	5.110	4.630	5.050	4.950	4.650	4.590
Bulk Modulus (Kv)	12.45	12.31	13.61	12.70	11.64	11.53	11.20	10.99
Shear Modulus (Gv)	11.24	10.87	11.20	10.56	10.41	10.35	9.860	9.800

Table 2: Summary of the prediction performance (MAE) of different properties in Materials project (Top) and JARVIS-DFT (Bottom). Model M is the vanilla variant of a SOTA model and M (Distilled) is the distilled variant using the pretrained CrysGNN. The best performance is highlighted in bold.

Downstream Task Evaluation

- Distilled version of any state-of- the-art model outperforms the vanilla model across all the properties.
- Average relative improvement across all properties for ALIGNN (4.19%) and GATGNN (8.02%) is lesser compared to CGCNN (16.20%) and CrysXPP (12.21%).
- **Possible reason :** ALIGNN and GATGNN are more complex models that CrysGNN.
- **Potential Improvement :** Incorporating angle-based information or attention mechanism as a part of pre-training framework may improve further.

Comparison with Existing Pre-trained Models.

- Demonstrate the effectiveness of the knowledge distillation method vis-a-vis the conventional fine-tuning approaches.
- We finetune CrysGNN and compare with distilled CGCNN, CrysXPP and pretrain GNN by hu et.al.
- Encoding architecture is same for CrysGNN, CGCNN, and CrysXPP (pretrained-finetuned version of CGCNN)
- Distilled CGCNN outperforms finetuned version of CrysGNN and both the baselines

Property	CGCNN (Distilled)	CrysGNN (Finetuned)	CrysXPP	Pretrain -GNN
Formation Energy	0.047	0.056	0.062	0.764
Bandgap (OPT)	0.160	0.183	0.190	0.688
Total Energy	0.053	0.069	0.072	1.451
Ehull	0.121	0.130	0.139	1.112
Bandgap (MBJ)	0.340	0.371	0.378	1.493
Bulk Modulus (Kv)	12.31	13.42	13.61	20.34
Shear Modulus (Gv)	10.87	11.07	11.20	16.51
SLME (%)	4.791	5.452	5.110	9.853
Spillage	0.354	0.374	0.363	0.481

Table 3: Comparison of the prediction performance (MAE) of seven properties in JARVIS-DFT between CrysGNN and existing pretrain-finetune models, the best performance is highlighted in bold.

Effectiveness on sparse training dataset.

Property	Train-Val-Test (%)	ALIGNN	ALIGNN (Distilled)	CGCNN	CGCNN (Distilled)	CrysXPP	CrysXPP (Distilled)	GATGNN	GATGNN (Distilled)
Bandgap	20-10-70	0.497	0.485 (2.53)	0.588	0.453* (23.04)	0.598	0.450* (24.82)	0.541	0.521 (3.70)
	40-10-50	0.404	0.395 (2.20)	0.532	0.419* (21.41)	0.496	0.405* (18.40)	0.462	0.448* (2.81)
(MBJ)	60-10-30	0.387	0.380 (1.98)	0.449	0.364 (19.08)	0.435	0.360 (17.36)	0.449	0.439 (2.29)
D.II. M. L.L.	20-10-70	14.70	14.06 (4.35)	16.91	16.26 (3.80)	15.42	14.25* (7.59)	14.80	14.19 (4.12)
Bulk Modulus	40-10-50	12.47	12.11 (2.89)	14.81	14.46 (2.36)	15.13	14.02* (7.34)	12.98	12.59 (3.00)
(Kv)	60-10-30	11.23	11.01 (1.96)	14.23	14.05 (1.26)	14.76	13.73 (6.98)	12.01	11.75 (2.16)
	20-10-70	12.71	12.31 (3.15)	13.89	12.50 (10.01)	13.39	12.07* (9.86)	12.83	12.42 (3.20)
Shear Modulus (Gv)	40-10-50	10.98	10.67 (2.82)	12.04	11.54* (4.15)	12.16	11.01* (9.46)	11.43	11.23 (1.75)
	60-10-30	10.24	10.04 (1.95)	11.75	11.31 (3.74)	11.77	10.67 (9.35)	10.65	10.47 (1.69)

Removal of DFT error bias using experimental data

Experiment Settings	CGCNN	CGCNN (Distilled)	CrysXPP	CrysXPP (Distilled)	GATGNN	GATGNN (Distilled)	ALIGNN	ALIGNN (Distilled)
Train on DFT Test on Experimental	0.265	0.244 (7.60)	0.243	0.225 (7.40)	0.274	0.232 (15.3)	0.220	0.209 (5.05)
Train on DFT and 20 % Experimental Test on 80 % Experimental	0.144	0.113 (21.7)	0.138	0.118 (14.2)	0.173	0.168 (2.70)	0.099	0.094 (5.60)
Train on DFT and 80 % Experimental Test on 20 % Experimental	0.094	0.073 (22.7)	0.087	0.071 (18.4)	0.113	0.109 (3.40)	0.073	0.069 (5.90)

Table 5: MAE of predicting experimental values by different SOTA models and their distilled versions with full DFT data and different percentages of experimental data for formation energy in OQMD-EXP dataset. Relative improvement in the distilled model is mentioned in bracket.

Conclusion

- In this work, we present a novel but simple **pre-trained GNN framework**, CrysGNN, for crystalline materials.
- Captures both **local chemical** and **global structural semantics** of crystal graphs, using node and graph level pre-training respectively
- We curate a new **large untagged crystal dataset** with **800K crystal graphs** to pretrain CrysGNN. We will release the pre-trained model along with the large dataset for the community.
- We **distill important knowledge** from CrysGNN and **inject** it into different state of the art property predictors and **enhance their performance**. We believe this approach can have applications in other domains too.
- Extensive experiments show its superiority over conventional fine-tune models and its inherent ability to remove DFT-induced bias.

Github Repo for CrysGNN : <u>https://github.com/kdmsit/crysgnn</u> Github Repo for 800K Dataset : <u>https://github.com/kdmsit/crystal_untagged_800K</u>

Thank You for Listening

Any Questions?

Email: kishalaydas@kgpian.iitkgp.ac.in Complex Network Research Group (CNeRG) : @cnerg