

CRYSGNN: DISTILLING PRE-TRAINED KNOWLEDGE TO ENHANCE PROPERTY PREDICTION FOR CRYSTALLINE MATERIALS.

Kishalay Das¹, Bidisha Samanta¹, Pawan Goyal¹, Seung-Cheol Lee², Satadeep Bhattacharjee², Niloy Ganguly^{1,3} ¹Indian Institute of Technology Kharagpur, India, ² Indo Korea Science and Technology Center, Bangalore, India

³Leibniz University of Hannover, Germany

Objectives

- To build a new large **untagged crystal graph dataset** curated from popular databases of crystalline materials.
- To develop a **pre-trained GNN model** for Crystalline materials, which captures both **local (node level) chemical** and **global (graph level) structural** semantics of crystal graphs.

Distillation and Property Prediction

Our Contributions

- We present CrysGNN, a Deep GNN Model for Crystalline materials, which is pre-trained on both node and graph level.
 We curate a new large untagged crystal dataset with 800K crystal graphs to pretrain CrysGNN.
- We introduce a self-supervised graph pre-training method which captures (a) connectivity of atoms, (b) atomic properties and (c) graph similarity from a large set of unlabeled crystal graph data.
 We distill important structural and chemical information of a crystal from the pre-trained CrysGNN model and pass it to the property predictor.

CrysGNN : Node Level Pre-training

Results

Property	CGCNN	CGCNN	CrysXPP	CrysXPP	GATGNN	GATGNN	ALIGNN	ALIGNN
		(Distilled)		(Distilled)		(Distilled)		(Distilled)
Formation Energy	0.039	0.032	0.041	0.035	0.096	0.091	0.026	0.024
Bandgap (OPT)	0.388	0.293	0.347	0.287	0.427	0.403	0.271	0.253
Formation Energy	0.063	0.047	0.062	0.048	0.132	0.117	0.036	0.035
Bandgap (OPT)	0.200	0.160	0.190	0.176	0.275	0.235	0.148	0.131
Total Energy	0.078	0.053	0.072	0.055	0.194	0.137	0.039	0.038
Ehull	0.170	0.121	0.139	0.114	0.241	0.203	0.091	0.083
Bandgap (MBJ)	0.410	0.340	0.378	0.350	0.395	0.386	0.331	0.325
Spillage	0.386	0.374	0.363	0.357	0.350	0.348	0.358	0.356
SLME $(\%)$	5.040	4.790	5.110	4.630	5.050	4.950	4.650	4.590
Bulk Modulus (Kv)	12.45	12.31	13.61	12.70	11.64	11.53	11.20	10.99
Shear Modulus (Gv)	11.24	10.87	11.20	10.56	10.41	10.35	9.860	9.800

Table 1:Summary of the prediction performance (MAE) of different properties in Materials Project (Top) and JARVIS-DFT (Bottom) for SOTA models, both vannila and distilled version.

CrysGNN : Graph Level Pre-training

References

Key Takeaways

- **Distilled version** of any state-of- the-art model **outperforms** the vanilla SOTA model across all the properties.
- Advantage of using distilling knowledge from a pre-trained model is we can **retrofit** it to any **downstream model** irrespective of their **architectural design**.
- Extensive experiments show its **superiority over conventional fine-tuning models** and its inherent ability to **remove DFT-induced bias**.

Contact Information

Paper Details

